Correlation structure of fractional Pearson diffusions

نویسندگان

  • Nikolai Leonenko
  • Mark M. Meerschaert
  • Alla Sikorskii
چکیده

The stochastic solution to a diffusion equations with polynomial coefficients is called a Pearson diffusion. If the first time derivative is replaced by a Caputo fractional derivative of order less than one, the stochastic solution is called a fractional Pearson diffusion. This paper develops an explicit formula for the covariance function of a fractional Pearson diffusion in steady state, in terms of Mittag-Leffler functions. That formula shows that fractional Pearson diffusions are long range dependent, with a correlation that falls off like a power law, whose exponent equals the order of the fractional derivative.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Pearson Diffusions.

Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also pre...

متن کامل

The Pearson diffusions: A class of statistically tractable diffusion processes

The Pearson diffusions is a flexible class of diffusions defined by having linear drift and quadratic squared diffusion coefficient. It is demonstrated that for this class explicit statistical inference is feasible. Explicit optimal martingale estimating functions are found, and the corresponding estimators are shown to be consistent and asymptotically normal. The discussion covers GMM, quasi-l...

متن کامل

Positive time fractional derivative

In mathematical modeling of the non-squared frequency-dependent diffusions, also known as the anomalous diffusions, it is desirable to have a positive real Fourier transform for the time derivative of arbitrary fractional or odd integer order. The Fourier transform of the fractional time derivative in the Riemann-Liouville and Caputo senses, however, involves a complex power function of the fra...

متن کامل

Stochastic derivatives for fractional diffusions

In this paper, we introduce some fundamental notions related to the so-called stochastic derivatives with respect to a given σ-field Q. In our framework, we recall well-known results about Markov Wiener diffusions. We afterwards mainly focus on the case where X is a fractional diffusion and where Q is the past, the future or the present of X . We treat some crucial examples and our main result ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & mathematics with applications

دوره 66 5  شماره 

صفحات  -

تاریخ انتشار 2013